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This paper presents a novel concept of a co-axial bi-rotor UAV which is controlled by moving its 
center of gravity. After deriving a 6DOF nonlinear model using the Euler-Newton method, we introduce 
a simplified 3DOF model for planar motion. Due to the limited available torque in pitch and roll 
channels, a linear quadratic regulator controller is designed for planar motion control, in order to 
evaluate the performance and maneuverability of the system while respecting the control limits. The 
simulation results of implementing an LQR controller on the nonlinear model for tracking problem 
shows that the system has convincing performance, and while control inputs are constrained, controlling 
the system is possible with no significant restrictions. Even with considering a first-order dynamic for 
the actuators, the implementation of the LQR controller for tracking an 8-shape trajectory considering 
different uncertainties shows that the system has high enough maneuverability for a wide range of 
applications, like Air Shipping and Delivery, Photography and Multimedia, Monitoring (Traffic, Wildlife, 
Industry, . . . ), Search and Rescue, Weather Forecasting, etc.

© 2020 Elsevier Masson SAS. All rights reserved.
1. Introduction

In recent years, drones have been used in a variety of fields, 
from agriculture, forestry, multimedia to transportation [1], traffic 
monitoring [2], remote sensing [3] and other civilian applications 
[4], each of these applications have their own specific needs, like 
long endurance, low energy consumption, high maneuverability, 
high stability and so on. It is hardly possible to gather all of those 
benefits in an Unmanned Aerial Vehicle (UAV) at the same time, 
this has led to the development of various types of drones from 
Vertical Takeoff and Landing (VTOL) and Horizontal Takeoff and 
Landing (HTOL) to Hybrid and Bio-Inspired UAVs [5].

Throughout most of this history, VTOL UAVs especially multi-
rotors, have been mainly the focal point of researchers’ attention, 
specifically because of their simplicity, low cost, no need for a run-
way to takeoff or landing and capability of being used in various 
applications [6]. Researchers have used a range of ideas to design 
and build these types of UAVs including tilt-rotors, ducted fans, 
semi-flapping rotors, thrust vectoring, embedded fans and Dyson 
fans [5], [7] one of the ideas which recently is used in multirotors 
is moving the center of gravity to control the UAV.

Moving Mass Control (MMC) is a control mechanism that uses 
internal moving masses to adjust the center of gravity and thereby 
control the attitude. While this type of control has been mostly 
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used in underwater vehicles, there are applications of this method 
in the aerospace industry, e.g. re-entry vehicles, spacecrafts, satel-
lites, and UAVs, a comprehensive review paper is published by Li et 
al. on the applications of MMC [8]. Particularly in re-entry vehicles, 
MMC has various applications [9], for example, Dong and his col-
leagues used MMC to control the roll channel of a re-entry vehicle 
with considerations of full state constraints [10], another work has 
been done for increasing the stability of a re-entry vehicle by Mo-
hammadi [11]. Many control methods like adaptive control [12], 
sliding mode control [13], different kinds of optimal controls and 
also controllers which are designed in combination with modern 
methods like machine learning, are implemented on Moving Mass 
(MM) systems [8].

In multirotors there are few researches about using MMC as 
a control mechanism, the first try of using MMC in multirotors 
comes back to 2008 when Bermes et al. Developed their new de-
sign of steering mechanism for a mini coaxial helicopter, in their 
concept they used a MM mechanism as an alternative for swash 
plate steering [14]. Yadav et al. also developed a similar MAV using 
COG shifting mechanism [15]. Haus and his colleagues also came 
up with the idea of using MMC in quadrotors, they developed an 
experimental model of a quadrotor with MMC mechanism using 
four miniature two-stroke combustion engines to supply the re-
quired lift force and four moving masses to control the attitude of 
the quadrotor [16].

Compared to other control methods such as using control sur-
faces, MMC has two major advantages:
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Fig. 1. The rack and pinion mechanism used to move the masses.

1. Mechanisms and actuators are completely inside the body 
and hence have no aerodynamic effect.

2. Since there is no need to use a fraction of the aerody-
namic forces to control the system, maximum use of aerodynamic 
forces will be provided, resulting in lower energy consumption and 
greater payload capacity specially in cruise flight [8].

Comparing with other works specifically with comparison to re-
entry vehicles, using MMC as a control method in multirotors have 
another advantage, in this method we take advantage of MMC not 
only for providing stability but also for controlling purposes. This 
concept also enables us to compensate for mass imbalances caused 
by low accuracy during the manufacturing process.

Contrary to other MMC UAVs, for example Haus’s concept, 
which uses four rotors in the structure of a quadrotor, we only use 
two rotors and in a new structure, we place the moving masses 
on sides of the main frame, this novel configuration increases the 
maximum available shift of COG and as a result the maximum 
available torques this is what increases the maneuverability of the 
system, and reduces the overall mass and cost. Furthermore in 
spite of Bermes’s co-axial helicopter this structure is more suit-
able to carry cargo meanwhile it uses two separate rotors instead 
of one contra-rotating rotor, which allows us to control the yaw 
channel when it is needed, furthermore this configuration allows 
us to put the batteries and other equipment inside the body. Also, 
the MM mechanisms are completely different, while Bermes uses 
a spherical MM mechanism with two swings we use a simple rack 
an pinion linear MM mechanism. As shown in following sections, 
this novel configuration of a moving mass controlled UAV has a 
high maneuverability and is suitable for a vast field of applications.

2. Concept description

The main idea in this paper is to control the attitude of the UAV 
by controlling the Center of Gravity (CoG). This can be reached by 
using four moving masses. In our concept, we use two co-axial 
rotors which are rotating in the opposite direction of each other, 
at the center of a square frame and four moving masses on four 
sides of the frame according to Fig. 2.

We use a pair of Clockwise (CW) and Counter Clockwise (CCW) 
propellers, in order to eliminate reaction torques produces by each 
rotor (and propeller).

There are different mechanisms for moving the masses, includ-
ing reels, rails, straps, and gears, in this concept we use rack 
and pinion mechanism which is controlled by a servo motor. This 
mechanism is fast enough, inexpensive and easy to run, and we 
can consider its dynamics as a first-order system (see Fig. 1).

The yaw angle is controlled by creating a differential angular 
velocity of �ω between two rotors, and only roll and pitch angles 
are controlled by moving the CoG. By moving the masses in X, Y 
2

Fig. 2. Schematic of moving CoG bi-rotor VTOL UAV concept.

Fig. 3. Reference frames.

direction, the lift force of two rotors will produce a torque about 
CoG which causes the UAV to rotate and enables us to control the 
UAV.

3. Mathematical modeling

First of all, we should explain the reference frames which are 
used in this section. We use three different reference frames, Earth 
Fixed Inertial Frame, Rotating Body Frame, and Rotating CoG frame.

We consider the Earth Fixed Inertial Frame (Ri) as a fixed frame 
at a desired origin. Body Frame (R0) is considered as a Body-Fixed 
frame at the center of surface, and finally, one more frame is con-
sidered which is parallel to the body frame at CoG, we will show 
this frame by R1 (see Fig. 3).

For any desired vector in any frame, we use rb
a notation which 

shows a vector from the origin to the object a in reference frame b.
We use ZYX Euler angles to represent the orientation of the 

UAV in the Ri frame Thus the transformation matrix of position 
from the body frame to the vertical inertial frame will be [17]:

T v
b = Rx (ϕ) R y (θ) Rz (ψ) (1)

where:

Rx (ϕ) =
⎡
⎣ 1 0 0

0 c (ϕ) −s (ϕ)

0 s (ϕ) c (ϕ)

⎤
⎦ (2)
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Fig. 4. General displacement of the moving masses.

R y (θ) =
⎡
⎣ c (θ) 0 s (θ)

0 1 0
−s (θ) 0 c (θ)

⎤
⎦ (3)

Rz (ψ) =
⎡
⎣ c (ψ) −s (ψ) 0

s (ψ) c (ψ) 0
0 0 1

⎤
⎦ (4)

where c and s denote cos and sin respectively. Similarly, for angular 
velocity transformation matrix we have [18]:

Tbv =
⎡
⎣ 1 s (ϕ) t (θ) c (ϕ) t (θ)

0 c (ϕ) −s (ϕ)

0 s(ϕ)
c(θ)

c(ϕ)
c(θ)

⎤
⎦ (5)

where t denotes tan. So, if we define angular and linear velocities 
of the UAV in the body frame as:

ωb =
⎧⎨
⎩

p
q
r

⎫⎬
⎭ Vb =

⎧⎨
⎩

u
v
w

⎫⎬
⎭ (6)

Then the angular and linear velocities in the inertial frame can be 
calculated like this [18]:

ω = Tbvωb (7)

V = Tbv Vb (8)

so, the kinematic equations are:

ϕ̇ = p + r (cos (ϕ) tan (θ)) + q (sin (ϕ) tan (θ))

θ̇ = q (cos (ϕ)) − r (sin (ϕ))

ψ̇ = r

(
cos (ϕ)

cos (θ)

)
+ p

(
sin (ϕ)

cos (θ)

) (9)

3.1. Center of gravity and moment of inertia

Movement of masses not only changes the CoG and moment of 
inertia (I) but also creates multiple derivative terms of the mo-
ment of inertia in equations. In order to calculate the effect of 
CoG displacement on the moment of inertia matrix and CoG, we 
consider a general displacement of the masses, where the displace-
ment of longitudinal masses (m1 and m3) is χ and the displace-
ment of lateral masses (m2 and m4) is ϒ.

According to the Fig. 4, the position vector of the masses in the 
R0 frame are:

r0 = [
χ l 0

]T
(10)
1 2

3

r0
2 = [

l
2 ϒ 0

]T
(11)

r0
3 = [

χ − l
2 0

]T
(12)

r0
4 = [− l

2 ϒ 0
]T

(13)

where l is the square side length. Therefore, the position of the 
CoG in the R0 frame will be:

r0
c = mbr0

b +∑4
n=1 mnr0

n

mb +∑4
n=1 mn

r0
b =[0 0 0]T

=========⇒
∑4

n=1 mnr0
n

M
= μ · [ 2χ 2ϒ 0

]T

(14)

where μ is the ratio of the mass of a single moving mass (which is 
equal to other moving masses) to overall mass (mn/M). The posi-
tion vector of the moving masses in the R1 frame can be calculated 
as follows:

r1
n = r0

n − r0
c (15)

So:

r1
1 = [

χ (1 − 2μ) l
2 − 2μϒ 0

]T
(16)

r1
2 = [

l
2 − 2μχ ϒ(1 − 2μ) 0

]T
(17)

r1
3 =

[
χ (1 − 2μ) −

(
l
2 + 2μϒ

)
0
]T

(18)

r1
4 =

[
−
(

l
2 + 2μχ

)
ϒ(1 − 2μ) 0

]T
(19)

Simply the position vector of the body in the R1 frame will be 
achieved:

r1
b = −r0

c = −μ · [ 2χ 2ϒ 0
]T (20)

It is clear that the overall moment of inertia of the UAV is the 
summation of the moment of inertia of all components:

I1
s = I1

b +
4∑

n=1

I1
n (21)

We consider five components, one of them is the body without 
moving masses and four others are the moving masses. In order 
to calculate the moment of inertia of the UAV, we should calculate 
the moment of inertia of the body and four moving masses around 
the CoG. By using the Parallel Axis Theorem for a desired mass m
we have [17]:

I1
m = Im + mm

(
r1T

m · r1
m E3 − r1

m · r1T
m

)
(22)

The moment of inertia of the body around CoG is:

I1
b = Ib + mb

(
r1T

b · r1
b E3 − r1

b · r1T
b

)
=

Ib + mb

⎛
⎜⎜⎜⎜⎜⎜⎝

μ2
[

2χ 2ϒ 0
]⎡⎣ 2χ

2ϒ

0

⎤
⎦
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

−μ2

⎡
⎣ 2χ

2ϒ

0

⎤
⎦[ 2χ 2ϒ 0

]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

Ib+⎡
⎣ 4mbμ

2ϒ2 −4mbμ
2χϒ 0

−4mbμ
2χϒ 4mbμ

2χ2 0
0 0 −4m μ2

(
χ2 + ϒ2

)
⎤
⎦

(23)
b
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where Ib is the moment of inertia of the body (except the mov-
ing masses) around its center of gravity, and mb is the mass of 
body without moving masses. The moment of inertia of the mov-
ing masses will be calculated in the same way, hence the overall 
moment of inertia of the system around the CoG will be:

I1
s = Ib + 4Im+⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ10 + σ6 + σ5
+σ3 − σ8

σ1 0

σ1
σ9 + σ6 + σ4

+σ2 − σ7
0

0 0
ml2 + σ10 + σ9
+σ5 + σ4 + σ3
+σ2 − σ8 − σ7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where:

σ2 = 4mbμ
2χ2 σ3 = 4mbμ

2ϒ2 σ4 = 16mμ2χ2

σ5 = 16mμ2ϒ2 σ6 = ml2

2
σ7 = 8mμϒ2

σ8 = 8mμχ2 σ9 = 2mχ2 σ10 = 2mϒ2

σ1 = −4μχϒ(4mμ − 2m + mbμ)

(25)

Accordingly, the derivate of the moment of inertia is:

İ1
s =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ̇10 + σ̇6 + σ̇5
+σ̇3 − σ̇8

σ̇1 0

σ̇1
σ̇9 + σ̇6 + σ̇4

+σ̇2 − σ̇7
0

0 0
σ̇10 + σ̇9 + σ̇5

+σ̇4 + σ̇3
+σ̇2 − σ̇8 − σ̇7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where:

σ̇2 = 8mbμ
2χχ̇ σ̇3 = 8mbμ

2ϒϒ̇ σ̇4 = 32mμ2χχ̇

σ̇5 = 32mμ2ϒϒ̇ σ̇6 = 0 σ̇7 = 16mμϒϒ̇

σ̇8 = 16mμχχ̇ σ̇9 = 4mχχ̇ σ̇10 = 4mϒϒ̇

σ̇1 = −4μχ̇ϒ (4mμ − 2m + mbμ)

− 4μχϒ̇ (4mμ − 2m + mbμ)

(27)

3.2. Dynamic equations

The R0 is a rotating frame, so the derivative of the vector r0 in 
the Ri frame will be [17]:

d{i}

dt

(
r0

0

)
= ṙ0

0 + ω × r0
0 (28)

where d{i}
dt denotes the time derivative of a vector in the rotating 

frame (R0) w.r.t the inertial frame (Ri) and ω is the angular veloc-
ity of the rotating frame (R0) w.r.t the inertial frame.

Thus, the velocity of the CoG in the Ri frame is:

vi
c = vi

b + v0
c + ω × r0

c (29)

where v0
c is the time derivative of the r0

c :

v0
c =

∑4
n=1 mnṙ0

n

M
(30)

Similarly, for the nth mass:

vi
n = vi + v0

n + ω × r0
n (31)
b

4

The linear momentum of the nth mass is:

L0
n = mn · v0

n (32)

Linear momentum of the overall system in the inertial frame is:

Li
s = Li

b +
4∑

n=1

Li
n (33)

Using Eq. (14), Eq. (31), Eq. (32) one can write:

Li
s = M

(
vi

b + ω × r0
c

)
+

4∑
n=1

mn v0
n

= M
(

vi
b + ω × r0

c

)
+

4∑
n=1

L0
n (34)

By using the second law of Newton we have:

d{i}

dt
vi

b = 1

M

⎛
⎝ 2∑

j=1

Fr j + F g + Fd − di

dt

(
4∑

n=1

L0
n

)⎞
⎠

− di

dt

(
ω × r0

c

)
(35)

where Frj is the propellant force of the jth rotor, which is calcu-
lated by:

Fr j = T v
b

(
b
2

j k̂
)

(36)

where b is the rotor constant, 
 is the angular velocity of the rotor 
and k̂ is the unit vector of the Z-axis in the body frame.

Also, the weight force is:

F g = −Mg K̂ (37)

where K̂ is the unit vector of the Z-axis in the inertial frame.
And Fd is external forces in the inertial frame.
Angular momentum of the system in the R1 frame equals to the 

sum of angular momentum of all components:

H1
s = H1

b +
4∑

n=1

H1
n (38)

where Hb is angular momentum of the body and Hn is the angular 
momentum of nth moving mass, we have:

H1
s = I1

s ω +
4∑

n=1

r1
n × L0

n (39)

Using the second law of Newton for rotation, yields:

d{i}

dt

(
I1

s ω +
4∑

n=1

r1
n × L0

n

)
=

2∑
j=1

(
Mt j + Mrj

)+ Mg + Md (40)

where Mt j is the torque of the jth rotor’s thrust and Mrj is the 
reaction torque of the jth rotor:

Mt j = −r0
c × Fr j (41)

Mrj = (−1) j+1 d
2k̂ (42)

in where d is rotor constant, also Mg is the torque of the weight 
force:

Mg = r1
b ×

(
−mb g K̂

)
+

4∑
n=1

r1
n ×

(
−mn g K̂

)
(43)

and Md is external momentums in body frame.
As we are calculating the angular momentum w.r.t CoG it is 

clear that Mg =0.
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3.3. Expanding the translational equations

The left-hand side of the (35) is:

d{i}

dt
vi

b = ai
b = [

ẍ ÿ z̈
]T (44)

for the term di

dt (
∑4

n=1 L0
n) we have:

d{i}

dt

(
4∑

n=1

L0
n

)
=

4∑
n=1

L̇0
n + ω × L0

n

L0
n=m·v0

n−−−−−→
4∑

n=1

m·v̇0
n + ω × m · v0

n (45)

where × is the vector cross operator, thus:

d{i}

dt

(
4∑

n=1

L0
n

)
= m

⎡
⎣ 2χ̈

2ϔ

0

⎤
⎦+ m

⎡
⎣ −2ωzϒ̇

2ωzχ̇
2ωxϒ̇ − 2ωyχ̇

⎤
⎦

= m

⎡
⎣ 2χ̈ − 2ωzϒ̇

2ϔ + 2ωzχ̇
2ωxϒ̇ − 2ωyχ̇

⎤
⎦ (46)

Consequently, the term di

dt (ω × r0
c ) will be:

d{i}

dt

(
ω × r0

c

)
= di

dt

⎛
⎝
⎡
⎣ ωx

ωy

ωz

⎤
⎦×

⎡
⎣ 2μχ

2μϒ

0

⎤
⎦
⎞
⎠

= d{i}

dt

⎛
⎝
⎡
⎣ −2ωzμϒ

2ωzμχ
2ωxμϒ − 2ωyμχ

⎤
⎦
⎞
⎠

=
⎡
⎣ −2ω̇zμϒ − 2ωzμϒ̇

2ω̇zμχ + 2ωzμχ̇
2ω̇xμϒ − 2ω̇yμχ + 2ωxμϒ̇ − 2ωyμχ̇

⎤
⎦

+
⎡
⎣ 2μϒωxωy − 2μχω2

y − 2μχω2
z

−2μϒω2
y − 2μϒω2

x − 2μχωxωy

2μϒωyωz + 2μχωxωz

⎤
⎦ (47)

As ω is expressed in the inertial frame, using Eq. (1) the nonlinear 
translational equations are simplified to:

ẍ = b

M

(

2

1 + 
2
2

)
(c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ))

− μ(2χ̈ − 2rϒ̇) − (−2ṙμϒ − 2rμϒ̇)

−
(

2μϒpq − 2μχq2 − 2μχr2
)

+ Fd,x

ÿ = b

M

(

2

1 + 
2
2

)
(c(ϕ)s(θ)s(ψ) − s(ϕ)c(ψ)) − μ(2ϔ + 2rχ̇ )

− (2ṙμχ + 2rμχ̇) −
(
−2μϒq2 − 2μϒp2 − 2μχ pq

)
+ Fd,y

z̈ = b

M

(

2

1 + 
2
2

)
(c(ϕ)c(θ)) − g − μ(2pϒ̇ − 2qχ̇ )

− (2ṗμϒ − 2q̇μχ + 2pμϒ̇ − 2qμχ̇) − (2μϒqr + 2μχ pr)

+ Fd,z

(48)

where Fd,x , Fd,y and Fd,z are the elements of the external forces 
in x, y and z directions.

Note that the air drag is neglected in the abovementioned equa-
tions.
5

3.4. Expanding the rotational equations

The left-hand side of the (40) is:

d{i}

dt

(
I1

s ω +
4∑

n=1

r1
n × L0

n

)
=

İ1
s ω + I1

s ω̇ + ω × (
I1

s ω
)+ ω ×

(
4∑

n=1

r1
n × L0

n

)

+
4∑

n=1

ṙ1
n × L0

n +
4∑

n=1

r1
n × L̇0

n (49)

where the terms İ1
s and I1

s are calculated previously in (24), (26), 
and the term ω × (

I1
s ω
)

is:

ω × (
I1

s ω
)=⎡

⎢⎢⎢⎢⎢⎢⎣

ωy

(
Izxωx+
Izyωy + Izzωz

)
− ωz

(
I yxωx+
I yyωy + I yzωz

)

ωz

(
Ixxωx+
Ixyωy + Ixzωz

)
− ωx

(
Izxωx+
Izyωy + Izzωz

)

ωx

(
I yxωx+
I yyωy + I yzωz

)
− ωy

(
Ixxωx+
Ixyωy + Ixzωz

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

Using Eq. (16), Eq. (17), Eq. (18), Eq. (19), Eq. (32) it can be ob-
tained:

4∑
n=1

r1
n × L0

n =
⎡
⎣ 0

0
4mμϒχ̇ − 4mμχϒ̇

⎤
⎦ (51)

therefore ω ×
(∑4

n=1 r1
n × L0

n

)
can be computed as follows:

ω ×
4∑

n=1

r1
n × L0

n =
⎡
⎣ωy

(
4mμϒχ̇ − 4mμχϒ̇

)
ωx
(
4mμϒχ̇ − 4mμχϒ̇

)
0

⎤
⎦ (52)

Similarly, the term 
∑4

n=1 r1
n × L̇0

n will be:

4∑
n=1

r1
n × L̇0

n =
⎡
⎣ 0

0
4mμϒχ̈ − 4mμχϔ

⎤
⎦ (53)

The term 
∑4

n=1 ṙ1
n × L0

n is zero:

4∑
n=1

ṙ1
n × L0

n =
⎡
⎣ 0

0
2mμχ̇ϒ̇

⎤
⎦+

⎡
⎣ 0

0
−2mμχ̇ϒ̇

⎤
⎦

+
⎡
⎣ 0

0
2mμχ̇ϒ̇

⎤
⎦+

⎡
⎣ 0

0
−2mμχ̇ϒ̇

⎤
⎦=

⎡
⎣ 0

0
0

⎤
⎦ (54)

In order to calculate the term 
∑2

j=1(Mt j + Mdj) we should replace 
(14), (36), (41), (42) in (40):

Mt j = −r0
c × Fr j =

⎡
⎣−2μχ

−2μϒ

0

⎤
⎦×

⎡
⎣ 0

0
b
(

2

1 + 
2
2

)
⎤
⎦

=
⎡
⎣−2bμϒ

(

2

1 + 
2
2

)
2bμχ

(

2

1 + 
2
2

)
0

⎤
⎦ (55)

Mdj = (−1) j+1 d
2k̂ =
⎡
⎣ 0

0
d
(

2 − 
2

)
⎤
⎦ (56)
1 2
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Finally, the nonlinear rotational equations can be derived:

ṗ = − Ixyq̇

Ixx
− Ixzṙ

Ixx
− İ xx p

Ixx
− İ xyq

Ixx
− İ xzr

Ixx

− q
(

Izx p + Izyq + Izzr
)

Ixx
+ r

(
I yx p + I yyq + I yzr

)
Ixx

− q
(
4mμϒχ̇ − 4mμχϒ̇

)
Ixx

− 2bμϒ
(

2

1 + 
2
2

)
Ixx

+ Md,x

q̇ = − I yx ṗ

I yy
− I yzṙ

I yy
− İ yx p

I yy
− İ yyq

I yy
− İ yzr

I yy

− r
(

Ixx p + Ixyq + Ixzr
)

I yy
+ p

(
Izx p + Izyq + Izzr

)
I yy

− p
(
4mμϒχ̇ − 4mμχϒ̇

)
I yy

+ 2bμχ
(

2

1 + 
2
2

)
I yy

+ Md,y

ṙ = − Izx ṗ

Izz
− Izyq̇

Izz
− İ zx p

Izz
− İ zyq

Izz
− İ zzr

Izz

− p
(

I yx p + I yyq + I yzr
)

Izz
+ q

(
Ixx p + Ixyq + Ixzr

)
Izz

− 4mμϒχ̈

Izz
− 4mμχϔ

Izz
+ d

(

2

1 − 
2
2

)
Izz

+ Md,z (57)

Where Md,x , Md,y and Md,z are the elements of external momen-
tums in x, y and z direction of the body frame.

4. 3DOF planar motion

In this section, we consider the motion of the UAV in the YZ 
plane. Firstly, multiple simplifying assumptions should be consid-
ered:

• The effect of displacement of the moving masses on I is ne-
glectable, hence I is considered to be a constant diagonal ma-
trix.

• The terms m, μ, χ , and ϒ are pretty small, thus it is reason-
able to consider that the translational and rotational motion of 
the UAV is only affected by the propellants forces and torques, 
and other forces (which are created due to the displacement 
of the moving masses) can be neglected.

• The angels θ and ψ are considered to be zero.
• Displacement of the masses in the direction of y axis (ϒ) is 

zero.
• External forces and momentums are zero.

It should be noted that the simplifications and approxima-
tions considered above, can be regarded as uncertainties. Using the 
above considerations, the simplified nonlinear 3DOF equations of 
motion can be written as follows:

ÿ = b

M

(

2

1 + 
2
2

)
(− sin (ϕ)) (58)

z̈ = b

M

(

2

1 + 
2
2

)
(cos (ϕ)) − g (59)

ϕ̈ = −2bμϒ
(

2

1 + 
2
2

)
Ixx

(60)

4.1. Linearization

Considering u1 as:

u1 = b
(

2

1 + 
2
2

)
(61)
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and u2 as:

u2 = ϒ (62)

by using Eq. (62) and Eq. (63), the Eq. (58), Eq. (59) and Eq. (60)
become:

ÿ = f1 (ϕ.u1.u2) = − sin (ϕ)

M
u1 (63)

z̈ = f2 (ϕ.u1.u2) = −g + cos (ϕ)

M
u1 (64)

ϕ̈ = f3 (ϕ.u1.u2) = −2μ

Ixx
u1u2 (65)

The equilibrium point considers at the hover condition where:

u1,e = Mg, u2,e = 0, ϕe = 0

So the linear functions at the equilibrium point can be calcu-
lated as follows [19]:

F1 = ∂ f1

∂u1

∣∣∣∣
u1.e .ϕe .u2.e

(u1 − u1.e)

+ ∂ f1

∂u2

∣∣∣∣
u1.e .ϕe .u2.e

(u2 − u2.e)

+ ∂ f1

∂ϕ

∣∣∣∣
u1.e .ϕe .u2.e

(ϕ − ϕe)

= −gϕ (66)

F2 = ∂ f2

∂u1

∣∣∣∣
u1.e .ϕe .u2.e

(u1 − u1.e)

+ ∂ f2

∂u2

∣∣∣∣
u1.e .ϕe .u2.e

(u2 − u2.e)

+ ∂ f2

∂ϕ

∣∣∣∣
u1.e .ϕe .u2.e

(ϕ − ϕ0)

= 1

M
u1 − g (67)

F3 = ∂ f3

∂u1

∣∣∣∣
u1.e .ϕe .u2.e

(u1 − u1.e)

+ ∂ f3

∂u2

∣∣∣∣
u1.e .ϕe .u2.e

(u2 − u2.e)

+ ∂ f3

∂ϕ

∣∣∣∣
u1.e .ϕe .u2.e

(ϕ − ϕe)

= −2μ

Ixx
Mgu2 (68)

then the linear model of the system under hover conditions can be 
summarized as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ÿ = −gϕ

z̈ = −g + 1

M
u1

ϕ̈ = −2μ

Ixx
Mgu2

(69)

Therefore, the state-space model becomes:
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⎡
⎢⎢⎢⎢⎢⎣

ẏ
ż
ϕ̇
ÿ
z̈
ϕ̈

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y
z
ϕ
ẏ
ż
ϕ̇

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1
M 0
0 −2μ

Ixx
Mg

⎤
⎥⎥⎥⎥⎥⎥⎦
[

u1
u2

]
(70)

in which the state vector is defined as follows:

X = [
y z ϕ ẏ ż ϕ̇

]T (71)

Considering Y as:

Y = [
y z

]T (72)

the C and D matrixes will be:

C =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
(73)

D =
[

0 0
0 0

]
(74)

4.2. Stability check

Considering A, B, C, D matrixes as described previously, the 
characteristic equation of y channel will be of 4th order and z
channel will be of 2nd order, the system has 4 poles in the origin, 
so the system is marginally stable.

4.3. Controllability and observability check

In order to design an LQR controller, it is necessary to check 
the controllability of the system; the controllability matrix of the 
system defines as:

M = [
B AB A2 B . . . An−1 B

]
(75)

The system is fully controllable if and only if the M has full rank. 
Also, the Observability Matrix defines as:

O = [
C C A C A2 . . . C An−1

]T
(76)

Similarly, the system is completely observable if and only if the O
has full rank [18].

Using MATLAB or any other mathematical software like Maple 
and Octave, it can be easily shown that the ranks of both M and O
matrices are 6 and the system is fully controllable and observable.

5. Linear quadratic regulator

For a state-regulator system with infinite time interval and cost 
function as follows:

J = 1

2

∞∫
0

[
x′ (t) Q x (t) + u′ (t) Ru (t)

]
dt (77)

The state feedback gain, K , can be calculated from:

K = −R−1 BT P (78)

where P is the solution of algebraic Riccati equation [20]:

P A + AT P + Q − P B R−1 BT P = 0 (79)
7

Fig. 5. Response of the system to the 8 shape input.

Fig. 6. System trajectory and desired trajectory.

6. LQR controller for tracking

In order to investigate the maneuverability of the system, it is 
common to consider a fast 8-shape trajectory, as a tracking mission 
for the system.

With regard to the tracking problem, we can define new states 
as follows:

X ′ = Xd − X =

⎡
⎢⎢⎢⎢⎢⎣

e y

ez

eϕ

e ẏ
eż
eϕ̇

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

yd − y
zd − z
ϕd − ϕ
ẏd − ẏ
żd − ż
ϕ̇d − ϕ̇

⎤
⎥⎥⎥⎥⎥⎦ (80)

where Xd is the desired trajectory in the state space which is de-
fined as:

yd = sin (0.4t) (81)

zd = sin (0.8t) + 1.5 (82)

The above defined trajectory is a fast-enough and challenging tra-
jectory which can determine the maneuverability of the system. 
Considering some adjustments in Q and R matrices by trial and er-
ror in order to satisfy control constraints in tracking above-defined 
trajectory, and initial condition in the origin, the response of the 
system for the 8-shape trajectory is depicted in Fig. 5.

In this case, the trajectory of the system in the Z Y plane is 
described in Fig. 6.
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Fig. 7. Displacement of the moving masses.

Table 1
Different uncertainties considered in simulations.

Condition Parameter Amount

Cond 1 Uncertainty in Mb 10%
Cond 2 Uncertainty in m 20%
Cond 3 Propellant force angle 5◦
Cond 4 Propellant efficiency 90%

Fig. 8. System trajectory for different conditions. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

The displacement of the moving mass, is under 0.25 m which is 
achieved by adjusting the R matrix by trail and error (see Fig. 7).

Even by considering uncertainties in model, controller perfor-
mance and system maneuverability will be acceptable for this spe-
cific nominal trajectory, to show this, we consider four different 
conditions with some desired uncertainties as described in Table 1
(see also Fig. 8).

Displacement of the moving masses in the different conditions 
is shown in Fig. 9.

As the results show, the system has acceptable maneuverability 
even with control limits in the roll channel and different uncer-
tainties. The performance of the system in the pitch channel can 
be estimated to be the same as the roll channel, so it can be 
concluded that the system has good enough maneuverability and 
convincing performance. Even though this concept is more com-
plicated than a quadrotor or some other UAVs in mathematical 
model, it has some benefits which make it appropriate for com-
mon applications, e.g. aerial post and delivery, aerial taxi, forestry, 
agriculture, multimedia, patrolling, traffic control etc. as well as 
applications which needs higher maneuverability like military ap-
plications and FPV racing. Furthermore, using this kind of concept 
8

Fig. 9. Displacement of the moving masses in different conditions.

makes it possible to reform the mass imbalances and tune the 
overall mass distribution, in order to keep the CoG at the center 
of surface (where the propellant force is acting) and achieve sta-
bility.

It should be considered that the maneuverability of the system 
can be improved by increasing the mass of the moving masses. 
However, it may increase the cost and energy consumption, and 
specifically, decrease payload capacity. An optimization problem 
can be solved to determine the optimum mass of the moving 
masses.

7. Conclusion

In this paper, we have presented a novel concept of a bi-rotor 
VTOL unmanned aerial vehicle which is controlled based on Mov-
ing Mass Control. MMC mechanism is used in our concept to shift 
the CoG of the UAV to control the attitude. we derived a nonlinear 
6DOF mathematical model of this kind of UAV and simplified this 
model to a 3DOF planar motion model. Finally, LQR control was 
implemented to evaluate the performance and maneuverability of 
the concept considering various uncertainties. The results indicate 
that this idea can provide good enough maneuverability to track a 
fast 8-shape trajectory, which is one of the most difficult tracking 
missions.
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